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An algorithm for reversal median problem

Jianxiu Hao
Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China

E-mail: sx35@zjnu.cn

Received 13 April 2006; revised 10 May 2006

In this paper, we present an algorithm for reversal median problem whose perfor-
mance ratio is less than 2.
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1. Introduction

In order to derive evolutional and fundamental relationships between genes,
sequence comparison is a useful tool. However, classical alignment algorithms
deal with only local mutations (i.e., insertions, deletions, and substitutions of nu-
cleotides) and ignore the global rearrangements (e.g., reversals, transpositions,
and translocations of long fragments). In [1], Palmer and Herbon found that
the rearrangements of mitochondrial genomes of Brassica (cabbage) and Brassica
campestris (turnip) are with 99–99.9% identical genes. They discovered that these
molecules which are almost identical in gene sequence, differ in gene order. The
classical methods of sequence comparison are not very useful to analyze highly
rearranged genomes [2,3]. Genome rearrangements is a common mode of molec-
ular evolution in mitochondrial, chloroplast, viral, bacterial DNA, and human
red–green color blindness [4–9].

Genome rearrangement by reversals, transpositions, and translocations has
been studied widely [4–6,8,10]. Since 1990s finding algorithms to calculate the
distance between genome pairs is a serious problem. Because the problem is
too difficult, many works focus on studying some simplified models where all
genomes contain the same set of genes and all genes appearing within a genome
are pairwise different (i.e., there are no gene duplications), the most studied dis-
tance is reversal (or inversion) distance which is to find the minimum number
of reversals transforming one genome into another [11]. In [8], authors found a
polynomial time algorithm to compute the reversal distance when the orientation
of the genes within the genomes is known. In this paper, we assume the orien-
tation of the genes within the genomes is known.
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When the orientation of the genes is known, a genome without gene
duplications can be represented by a signed permutation π on N := {1, 2, . . . , n},
obtained by signing a permutation τ = (τ1, τ2, . . . , τn) on N , i.e., replacing each
element τi either by πi = + τi or by πi = −τi . In particular, signs model
the relative orientation of the genes within the genome. We denote by Σn the
set of the 2nn! signed permutations on N . A reversal of interval (i, j), 1 �
i � j � n, applied to a signed permutation π , is an operation which both
inverts the subsequence πiπi+1, . . . , π j−1π j and switches the signs of the ele-
ments in the subsequence, replacing π1, . . . , πi−1 πiπi+1, . . . , π j−1π jπ j+1, . . . , πn
by π1, . . . , πi−1− π j − π j−1, . . . ,−πi+1− πiπ j+1, . . . , πn. The minimum number
of reversals needed to transform a signed permutation π1 into a signed permuta-
tion π2 (or viceversa) is called the reversal distance between π1 and π2, denoted
by d(π1, π2) [11].

In this paper, we study Reversal Median Problem (RMP for short) which is
defined as follows: given q permutations π1, π2, . . . , πq ∈ Σn, q � 3, represent-
ing genomes with the same set of genes, RMP calls for a permutation σ ∈ Σn
such that

δ(σ ) :=
q∑

k=1

d(σ, πk)

is minimized. Let δ∗ denote the optimal solution value of RMP [11].
The counterpart of RMP is Breakpoint Median Problem (BMP) where the

breakpoint distance is used instead of the reversal distance. More precisely, BMP
is the problem to find a genome which is closest to a given set of genomes
such that the sum of the breakpoint distance between the finding genome and
each given genome is minimized [11]. All the methods to reconstruct evolution-
ary trees solve BMP as a subroutine to find the best genome associated with a
given tree vertex once the genomes associated with the neighbors of the vertex
are fixed [12,13].

In fact, all papers dealing with BMP pointed out that RMP is a more
realistic model than BMP. “For RMP, there are no algorithms available, aside
from rough heuristics, for handling even three relatively short genomes ” [12,14].
“Even heuristic approaches for RMP work well only for small instances” [15].

The organization of the paper is as follows. In section 2, we present
an algorithm with its performance ratio, section 3 contains some concluding
remarks.

2. Main results

Definition. We call permutations π1, π2, π3 share a common line if and only
if there exists π j1 appears in one of the shortest sequences of permutations
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transforming π j2 into π j3 , where j1, j2, j3 ∈ {1, 2, 3}, and π j1 , π j2 , π j3 are differ-
ent permutations.

Furthermore, we call π j1 the inner permutation of π j2 and π j3 . For conve-
nience, when π j1 = π j2 or π j1 = π j3 , we call π j1 the inner permutation of π j2

and π j3 too.
For example, let π1 = (2,−3, 1), π2 = (2,−1, 3), π3 = (1,−2, 3), the short-

est sequence of reversals transforming π1 into π3 is shown as follows:

π1 = 2−31,

π2 = 2− 13,

π3 = 1− 23.

From above reversal sequence we know that π2 is the inner permutation of
π1 and π3.

Algorithm
Step 0:

( j1, j2, . . . , jq) = (1, 2, . . . , q),

δAlg = ∞,

A = {( j1, j2, . . . , jq)|( j1, j2, . . . , jq) is a permutation on {1, 2, . . . , q}}.

Step 1: If

δAlg >

q−1∑

i=1

d(π ji , π ji+1)

then

δAlg ←−
q−1∑

i=1

d(π ji , π ji+1)

else

δAlg ←− δAlg.

A←− A − {( j1, j2, . . . , jq)}.
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Draw ( j
′
1, j

′
2, . . . , j

′
q) ∈ A,

( j1, j2, . . . , jq)←− ( j
′
1, j

′
2, . . . , j

′
q).

Step 2: If A = ∅, stop. Else, go to step 1.

Theorem. Given an instance π1, π2, . . . , πq ∈ Σn, let δAlg be the value pro-
vided by algorithm above and δ∗ be the optimal solution value of RMP. We have

δAlg

δ∗
< 2.

Proof.

Claim 1

1
2 max

( j1, j2,..., jq )

q∑

i=1

d(π ji , π ji+1) �

δ∗ � min
( j1, j2,..., jq )

q−1∑

i=1

d(π ji , π ji+1),

where ( j1, j2, . . . , jq) takes over all permutations on {1, 2, . . . , q}.
If we proved claim 1, our theorem might follow obviously. Hence, we prove

claim 1 first.
We construct a weighted complete graph Kq as follows:

V (Kq) = {π1, π2, . . . , πq},
π iπ j ∈ E(Kq) if and only if i �= j , where 1 � i, j � q. Let

w(π iπ j ) = d(π i , π j ),

where w(π iπ j ) denotes the weight of edge π iπ j . We call
∑q−1

i=1 d(π ji , π ji+1) the
weight of path π j1π j2, . . . , π jq .

In the following we use mathematical induction to prove

δ∗ � min
( j1, j2,..., jq )

q−1∑

i=1

d(π ji , π ji+1),

where ( j1, j2, . . . , jq) takes over all permutations on {1, 2, . . . , q}.
(1) Suppose q = 3, let σ be an optimal solution of δ∗.
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Case 1. Suppose σ = π1. Hence, δ∗ = δ(π1). Obviously, δ∗ equals the weight
of path π2π1π3.

Similarly, we can discuss the cases when δ = π2 and δ = π3. Hence, in case 1
we have

δ∗ � min
( j1, j2, j3)

2∑

i=1

d(π ji , π ji+1),

where ( j1, j2, j3) takes over all permutations on {1, 2, 3}.

Case 2. Suppose σ ∈ Σn, note that it is possible that σ �= π1, σ �= π2, and
σ �= π3. By the definition of δ∗ we have

δ∗ � min{δ(π1), δ(π2), δ(π3)}.
By the conclusion of case 1, we have

δ∗ � min
( j1, j2, j3)

2∑

i=1

d(π ji , π ji+1),

where ( j1, j2, j3) takes over all permutations on {1, 2, 3}.
(2) Suppose

δ∗ � min
( j1, j2,..., jq )

q−1∑

i=1

d(π ji , π ji+1)

holds for q = k. In the following we assume q = k + 1, and let σ be an optimal
solution for δ∗.

Case 3. Suppose there exists π i such that σ = π i . Hence,

δ∗ = δ(π i )

=
q∑

m=1

d(π i , πm)

= [−d(π i , π t )+
q∑

m=1

d(π i , πm)] + d(π i , π t ),

where π t is any vertex belonging to {π1, π2, . . . , πq} and π t �= π i .
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By hypothesis in (2) we know that

−d(π i , π t )+
q∑

m=1

d(π i , πm)

is no more than the weight of any path P1 which starts from π i with k vertices
in {π1, π2, . . . , πq} − {π t }.

Let P = π iπ t ∪ P1. Clearly, the weight of P is

q−1∑

i=1

d(π ji , π ji+1).

Hence, δ∗ = δ(π i ) is no more than the weight of P . Further, we have

δ∗ � min
( j1, j2,..., jq )

q−1∑

i=1

d(π ji , π ji+1),

where ( j1, j2, . . . , jq) takes over all permutations on {1, 2, . . . , q}.
Case 4. Suppose σ ∈ Σn. By the definition of δ∗ we have

δ∗ � min{δ(π1), δ(π2), . . . , δ(πq)}.
By the conclusion of case 3, case 4 follows.

In the following, we want to prove

δ∗ � 1
2

max
( j1, j2,..., jq )

q∑

i=1

d(π ji , π ji+1).

At first, we prove claim 2 as a stepping-stone.

Claim 2. Let σ, π1, π2 ∈ Σn, we have

d(π1, σ )+ d(σ, π2) � d(π1, π2).

Further, d(π1, σ ) + d(σ, π2) = d(π1, π2) if and only if σ is the inner permuta-
tion of π1 and π2.

In fact, let A be the set of permutations appearing in one of the shortest
sequences of permutations transforming π1 into σ and B be the set of permu-
tations appearing in one of the shortest sequences of permutations transforming
σ into π2. Then, A ∪ B contains the set of permutations transforming π1 into
π2. By the definition of d(π1, π2) we have

d(π1, σ )+ d(σ, π2) � d(π1, π2).
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When σ is the inner permutation of π1 and π2, by definition, we know that
A ∪ B is the set of the shortest sequence of permutations transforming π1 into
π2. Then,

d(π1, σ )+ d(σ, π2) = d(π1, π2).

On the other hand, suppose

d(π1, σ )+ d(σ, π2) = d(π1, π2)

holds. If σ is not the inner permutation of π1 and π2, from above proof we
know that A ∪ B is not the set of the shortest sequence of permutations trans-
forming π1 into π2 . Hence, we have

d(π1, σ )+ d(σ, π2) > d(π1, π2),

which is a contradiction. Claim 2 follows.
Let ( j1, j2, . . . , jq) be a permutation on {1, 2, . . . , q} and σ ∈ Σn be an

optimal permutation of δ∗. By claim 2, we have

d(π ji , σ )+ d(σ, π ji+1) � d(π ji , π ji+1),

where i = 1, 2, . . . , q, π jq+1 = π j1 .
Therefore, we have

q∑

i=1

[d(π ji , σ )+ d(σ, π ji+1)] �
q∑

i=1

d(π ji , π ji+1).

Thus, we have

δ∗ � 1
2

q∑

i=1

d(π ji , π ji+1).

Further, we have

δ∗ � 1
2

max
( j1, j2,..., jq )

q∑

i=1

d(π ji , π ji+1).

From above proof claim 1 follows. By claim 1 the theorem follows.
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3. Concluding remarks

In order to solve RMP, we must find an optimal permutation σ ∈ Σn. By
[11], we know that RMP is NP-hard even for q = 3. Hence, we can not find σ

easily. However, if we regard π i as σ , by claim 1 we can find an upper bound
very closely and this upper bound can be found easily, because we can compute
d(π ji , π ji+1) in polynomial time and π1, π2, . . . , πq are known.

Note that the upper bound provided by Algorithm which is the same as
claim 1 is attainable. For the example provided in [11, pp. 96 and 97], by claim
1 we have

δ∗ � min{d(π1, π2)+ d(π2, π3),

d(π2, π1)+ d(π1, π3), d(π2, π3)+ d(π3, π1)} = 5.

Hence, δAlg = 5. From [11, p. 97], we have δ∗ = 5 which is the same as that
provided by our Algorithm.
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